Skip to content


RateStreamSource is a streaming source that generates <> that can be useful for testing and PoCs.

RateStreamSource <> for rate format (that is registered by[RateSourceProvider]).

[source, scala]

val rates = spark .readStream .format("rate") // ← use RateStreamSource .option("rowsPerSecond", 1) .load

[[options]] .RateStreamSource's Options [cols="1m,1,2",options="header",width="100%"] |=== | Name | Default Value | Description

| numPartitions | (default parallelism) | [[numPartitions]] Number of partitions to use

| rampUpTime | 0 (seconds) | [[rampUpTime]]

| rowsPerSecond | 1 | [[rowsPerSecond]] Number of rows to generate per second (has to be greater than 0)


[[schema]] RateStreamSource uses a predefined schema that cannot be changed.

[source, scala]

val schema = rates.schema scala> println(schema.treeString) root |-- timestamp: timestamp (nullable = true) |-- value: long (nullable = true)

.RateStreamSource's Dataset Schema (in the positional order) [cols="1m,1m",options="header",width="100%"] |=== | Name | Type

| timestamp | TimestampType

| value | LongType


[[internal-registries]] .RateStreamSource's Internal Registries and Counters [cols="1m,2",options="header",width="100%"] |=== | Name | Description

| clock | [[clock]]

| lastTimeMs | [[lastTimeMs]]

| maxSeconds | [[maxSeconds]]

| startTimeMs | [[startTimeMs]]


[[logging]] [TIP] ==== Enable INFO or DEBUG logging levels for org.apache.spark.sql.execution.streaming.RateStreamSource to see what happens inside.

Add the following line to conf/

Refer to[Logging].

=== [[getBatch]] Generating DataFrame for Streaming Batch -- getBatch Method

[source, scala]

getBatch(start: Option[Offset], end: Offset): DataFrame

getBatch is a part of the Source abstraction.

Internally, getBatch calculates the seconds to start from and end at (from the input start and end offsets) or assumes 0.

getBatch then calculates the values to generate for the start and end seconds.

You should see the following DEBUG message in the logs:

DEBUG RateStreamSource: startSeconds: [startSeconds], endSeconds: [endSeconds], rangeStart: [rangeStart], rangeEnd: [rangeEnd]

If the start and end ranges are equal, getBatch creates an empty DataFrame (with the <>) and returns.

Otherwise, when the ranges are different, getBatch creates a DataFrame using SparkContext.range operator (for the start and end ranges and <> partitions).

=== [[creating-instance]] Creating RateStreamSource Instance

RateStreamSource takes the following when created:

  • [[sqlContext]] SQLContext
  • [[metadataPath]] Path to the metadata
  • [[rowsPerSecond]] Rows per second
  • [[rampUpTimeSeconds]] RampUp time in seconds
  • [[numPartitions]] Number of partitions
  • [[useManualClock]] Flag to whether to use ManualClock (true) or SystemClock (false)

RateStreamSource initializes the <>.

Back to top