CollapseCodegenStages Physical Optimization¶
CollapseCodegenStages
is a physical query optimization (aka physical query preparation rule or simply preparation rule) that collapses physical operators and generates a Java source code for their execution.
When executed (with whole-stage code generation enabled), CollapseCodegenStages
inserts WholeStageCodegenExec or InputAdapter physical operators to the physical plan. CollapseCodegenStages
uses so-called control gates before deciding whether a physical operator supports the whole-stage Java code generation or not (and what physical operator to insert):
-
Factors in physical operators with CodegenSupport only
-
Enforces the supportCodegen custom requirements on a physical operator, i.e.
- supportCodegen flag turned on
- No Catalyst expressions are CodegenFallback
- Output schema is neither wide nor deep and uses just enough fields (including nested fields)
- Children use output schema that is also neither wide nor deep
CollapseCodegenStages
is a Catalyst rule for transforming physical query plans (Rule[SparkPlan]
).
CollapseCodegenStages
is part of the preparations batch of physical query plan rules and is executed when QueryExecution
is requested for the optimized physical query plan (in executedPlan phase of a query execution).
With spark.sql.codegen.wholeStage internal configuration property enabled, CollapseCodegenStages
finds physical operators with CodegenSupport for which whole-stage codegen requirements hold and collapses them together as WholeStageCodegenExec
physical operator (possibly with InputAdapter in-between for physical operators with no support for Java code generation).
Note
InputAdapter
shows itself with no star in the output of explain (or TreeNode.numberedTreeString).
val q = spark.range(1).groupBy("id").count
scala> q.explain
== Physical Plan ==
*HashAggregate(keys=[id#16L], functions=[count(1)])
+- Exchange hashpartitioning(id#16L, 200)
+- *HashAggregate(keys=[id#16L], functions=[partial_count(1)])
+- *Range (0, 1, step=1, splits=8)
Creating Instance¶
CollapseCodegenStages
takes the following to be created:
- Codegen Stage Counter (Java's AtomicInteger)
CollapseCodegenStages
is created when:
QueryExecution
utility is used for the preparations batchAdaptiveSparkPlanExec
physical operator is requested for the postStageCreationRules
Executing Rule¶
apply(
plan: SparkPlan): SparkPlan
apply
is part of the Rule abstraction.
apply
starts inserting WholeStageCodegenExec (with InputAdapter) in the input plan
physical plan only when spark.sql.codegen.wholeStage configuration property.
Otherwise, apply
does nothing at all (i.e. passes the input physical plan through unchanged).
Inserting WholeStageCodegenExec Physical Operators For Codegen Stages¶
insertWholeStageCodegen(
plan: SparkPlan): SparkPlan
insertWholeStageCodegen
branches off per physical operator:
-
For physical operators with a single output schema attribute of type
ObjectType
,insertWholeStageCodegen
requests the operator for the child physical operators and tries to insertWholeStageCodegen on them only. -
For physical operators that support Java code generation and meets the additional requirements for codegen,
insertWholeStageCodegen
insertInputAdapter (with the operator), requestsWholeStageCodegenId
for thegetNextStageId
and then uses both to return a new WholeStageCodegenExec physical operator. -
For any other physical operators,
insertWholeStageCodegen
requests the operator for the child physical operators and tries to insertWholeStageCodegen on them only.
insertWholeStageCodegen
skips physical operators with a single-attribute output schema with the type of the attribute being ObjectType
type.
Inserting InputAdapter Unary Physical Operator¶
insertInputAdapter(
plan: SparkPlan): SparkPlan
insertInputAdapter
inserts an InputAdapter physical operator in a physical plan.
-
For SortMergeJoinExec (with inner and outer joins) inserts an InputAdapter operator for both children physical operators individually
-
For codegen-unsupported operators inserts an InputAdapter operator
-
For other operators (except
SortMergeJoinExec
operator above or for which Java code cannot be generated) inserts a WholeStageCodegenExec operator for every child operator
Fixme
Examples for every case + screenshots from web UI
supportCodegen¶
Physical Operator¶
supportCodegen(
plan: SparkPlan): Boolean
supportCodegen
is positive (true
) when the input physical operator is as follows:
-
CodegenSupport and the supportCodegen flag is on (it is on by default)
-
No Catalyst expressions are CodegenFallback (except LeafExpressions)
-
Output schema is neither wide not deep, i.e. uses just enough fields (including nested fields)
. Children also have the output schema that is neither wide nor deep
Otherwise, supportCodegen
is negative (false
).
Expression¶
supportCodegen(
e: Expression): Boolean
supportCodegen
is positive (true
) when the input Catalyst expression is the following (in the order of verification):
-
non-CodegenFallback
Otherwise, supportCodegen
is negative (false
).
Demo¶
// FIXME: DEMO
// Step 1. The top-level physical operator is CodegenSupport with supportCodegen enabled
// Step 2. The top-level operator is CodegenSupport with supportCodegen disabled
// Step 3. The top-level operator is not CodegenSupport
// Step 4. "plan.output.length == 1 && plan.output.head.dataType.isInstanceOf[ObjectType]"
Demo¶
import org.apache.spark.sql.SparkSession
val spark: SparkSession = ...
// both where and select operators support codegen
// the plan tree (with the operators and expressions) meets the requirements
// That's why the plan has WholeStageCodegenExec inserted
// That you can see as stars (*) in the output of explain
val q = Seq((1,2,3)).toDF("id", "c0", "c1").where('id === 0).select('c0)
scala> q.explain
== Physical Plan ==
*Project [_2#89 AS c0#93]
+- *Filter (_1#88 = 0)
+- LocalTableScan [_1#88, _2#89, _3#90]
// CollapseCodegenStages is only used in QueryExecution.executedPlan
// Use sparkPlan then so we avoid CollapseCodegenStages
val plan = q.queryExecution.sparkPlan
import org.apache.spark.sql.execution.ProjectExec
val pe = plan.asInstanceOf[ProjectExec]
scala> pe.supportCodegen
res1: Boolean = true
scala> pe.schema.fields.size
res2: Int = 1
scala> pe.children.map(_.schema).map(_.size).sum
res3: Int = 3
import org.apache.spark.sql.SparkSession
val spark: SparkSession = ...
// both where and select support codegen
// let's break the requirement of spark.sql.codegen.maxFields
val newSpark = spark.newSession()
import org.apache.spark.sql.internal.SQLConf.WHOLESTAGE_MAX_NUM_FIELDS
newSpark.sessionState.conf.setConf(WHOLESTAGE_MAX_NUM_FIELDS, 2)
scala> println(newSpark.sessionState.conf.wholeStageMaxNumFields)
2
import newSpark.implicits._
// the same query as above but created in SparkSession with WHOLESTAGE_MAX_NUM_FIELDS as 2
val q = Seq((1,2,3)).toDF("id", "c0", "c1").where('id === 0).select('c0)
// Note that there are no stars in the output of explain
// No WholeStageCodegenExec operator in the plan => whole-stage codegen disabled
scala> q.explain
== Physical Plan ==
Project [_2#122 AS c0#126]
+- Filter (_1#121 = 0)
+- LocalTableScan [_1#121, _2#122, _3#123]
Demo¶
val q = spark.range(3).groupBy('id % 2 as "gid").count
// Let's see where and how many "stars" does this query get
scala> q.explain
== Physical Plan ==
*(2) HashAggregate(keys=[(id#0L % 2)#9L], functions=[count(1)])
+- Exchange hashpartitioning((id#0L % 2)#9L, 200)
+- *(1) HashAggregate(keys=[(id#0L % 2) AS (id#0L % 2)#9L], functions=[partial_count(1)])
+- *(1) Range (0, 3, step=1, splits=8)
// There are two stage IDs: 1 and 2 (see the round brackets)
// Looks like Exchange physical operator does not support codegen
// Let's walk through the query execution phases and see it ourselves
// sparkPlan phase is just before CollapseCodegenStages physical optimization is applied
val sparkPlan = q.queryExecution.sparkPlan
scala> println(sparkPlan.numberedTreeString)
00 HashAggregate(keys=[(id#0L % 2)#12L], functions=[count(1)], output=[gid#2L, count#5L])
01 +- HashAggregate(keys=[(id#0L % 2) AS (id#0L % 2)#12L], functions=[partial_count(1)], output=[(id#0L % 2)#12L, count#11L])
02 +- Range (0, 3, step=1, splits=8)
// Compare the above with the executedPlan phase
// which happens to be after CollapseCodegenStages physical optimization
scala> println(q.queryExecution.executedPlan.numberedTreeString)
00 *(2) HashAggregate(keys=[(id#0L % 2)#12L], functions=[count(1)], output=[gid#2L, count#5L])
01 +- Exchange hashpartitioning((id#0L % 2)#12L, 200)
02 +- *(1) HashAggregate(keys=[(id#0L % 2) AS (id#0L % 2)#12L], functions=[partial_count(1)], output=[(id#0L % 2)#12L, count#11L])
03 +- *(1) Range (0, 3, step=1, splits=8)
// Let's apply the CollapseCodegenStages rule ourselves
import org.apache.spark.sql.execution.CollapseCodegenStages
val ccsRule = CollapseCodegenStages(spark.sessionState.conf)
scala> val planAfterCCS = ccsRule.apply(sparkPlan)
planAfterCCS: org.apache.spark.sql.execution.SparkPlan =
*(1) HashAggregate(keys=[(id#0L % 2)#12L], functions=[count(1)], output=[gid#2L, count#5L])
+- *(1) HashAggregate(keys=[(id#0L % 2) AS (id#0L % 2)#12L], functions=[partial_count(1)], output=[(id#0L % 2)#12L, count#11L])
+- *(1) Range (0, 3, step=1, splits=8)
// The number of stage IDs do not match
// Looks like the above misses one or more rules
// EnsureRequirements optimization rule?
// It is indeed executed before CollapseCodegenStages
import org.apache.spark.sql.execution.exchange.EnsureRequirements
val erRule = EnsureRequirements(spark.sessionState.conf)
val planAfterER = erRule.apply(sparkPlan)
scala> println(planAfterER.numberedTreeString)
00 HashAggregate(keys=[(id#0L % 2)#12L], functions=[count(1)], output=[gid#2L, count#5L])
01 +- Exchange hashpartitioning((id#0L % 2)#12L, 200)
02 +- HashAggregate(keys=[(id#0L % 2) AS (id#0L % 2)#12L], functions=[partial_count(1)], output=[(id#0L % 2)#12L, count#11L])
03 +- Range (0, 3, step=1, splits=8)
// Time for CollapseCodegenStages
val planAfterCCS = ccsRule.apply(planAfterER)
scala> println(planAfterCCS.numberedTreeString)
00 *(2) HashAggregate(keys=[(id#0L % 2)#12L], functions=[count(1)], output=[gid#2L, count#5L])
01 +- Exchange hashpartitioning((id#0L % 2)#12L, 200)
02 +- *(1) HashAggregate(keys=[(id#0L % 2) AS (id#0L % 2)#12L], functions=[partial_count(1)], output=[(id#0L % 2)#12L, count#11L])
03 +- *(1) Range (0, 3, step=1, splits=8)
assert(planAfterCCS == q.queryExecution.executedPlan, "Plan after ER and CCS rules should match the executedPlan plan")
// Bingo!
// The result plan matches the executedPlan plan
// HashAggregateExec and Range physical operators support codegen (is a CodegenSupport)
// - HashAggregateExec disables codegen for ImperativeAggregate aggregate functions
// ShuffleExchangeExec does not support codegen (is not a CodegenSupport)
// The top-level physical operator should be WholeStageCodegenExec
import org.apache.spark.sql.execution.WholeStageCodegenExec
val wsce = planAfterCCS.asInstanceOf[WholeStageCodegenExec]
// The single child operator should be HashAggregateExec
import org.apache.spark.sql.execution.aggregate.HashAggregateExec
val hae = wsce.child.asInstanceOf[HashAggregateExec]
// Since ShuffleExchangeExec does not support codegen, the child of HashAggregateExec is InputAdapter
import org.apache.spark.sql.execution.InputAdapter
val ia = hae.child.asInstanceOf[InputAdapter]
// And it's only now when we can get at ShuffleExchangeExec
import org.apache.spark.sql.execution.exchange.ShuffleExchangeExec
val se = ia.child.asInstanceOf[ShuffleExchangeExec]
Demo¶
import org.apache.spark.sql.SparkSession
val spark: SparkSession = ...
// Just a structured query with explode Generator expression that supports codegen "partially"
// i.e. explode extends CodegenSupport but codegenSupport flag is off
val q = spark.range(2)
.filter($"id" === 0)
.select(explode(lit(Array(0,1,2))) as "exploded")
.join(spark.range(2))
.where($"exploded" === $"id")
scala> q.show
+--------+---+
|exploded| id|
+--------+---+
| 0| 0|
| 1| 1|
+--------+---+
// the final physical plan (after CollapseCodegenStages applied and the other optimization rules)
scala> q.explain
== Physical Plan ==
*BroadcastHashJoin [cast(exploded#34 as bigint)], [id#37L], Inner, BuildRight
:- *Filter isnotnull(exploded#34)
: +- Generate explode([0,1,2]), false, false, [exploded#34]
: +- *Project
: +- *Filter (id#29L = 0)
: +- *Range (0, 2, step=1, splits=8)
+- BroadcastExchange HashedRelationBroadcastMode(List(input[0, bigint, false]))
+- *Range (0, 2, step=1, splits=8)
// Control when CollapseCodegenStages is applied to a query plan
// Take sparkPlan that is a physical plan before optimizations, incl. CollapseCodegenStages
val plan = q.queryExecution.sparkPlan
// Is wholeStageEnabled enabled?
// It is by default
scala> println(spark.sessionState.conf.wholeStageEnabled)
true
import org.apache.spark.sql.execution.CollapseCodegenStages
val ccs = CollapseCodegenStages(conf = spark.sessionState.conf)
scala> ccs.ruleName
res0: String = org.apache.spark.sql.execution.CollapseCodegenStages
// Before CollapseCodegenStages
scala> println(plan.numberedTreeString)
00 BroadcastHashJoin [cast(exploded#34 as bigint)], [id#37L], Inner, BuildRight
01 :- Filter isnotnull(exploded#34)
02 : +- Generate explode([0,1,2]), false, false, [exploded#34]
03 : +- Project
04 : +- Filter (id#29L = 0)
05 : +- Range (0, 2, step=1, splits=8)
06 +- Range (0, 2, step=1, splits=8)
// After CollapseCodegenStages
// Note the stars (that WholeStageCodegenExec.generateTreeString gives)
val execPlan = ccs.apply(plan)
scala> println(execPlan.numberedTreeString)
00 *BroadcastHashJoin [cast(exploded#34 as bigint)], [id#37L], Inner, BuildRight
01 :- *Filter isnotnull(exploded#34)
02 : +- Generate explode([0,1,2]), false, false, [exploded#34]
03 : +- *Project
04 : +- *Filter (id#29L = 0)
05 : +- *Range (0, 2, step=1, splits=8)
06 +- *Range (0, 2, step=1, splits=8)
// The first star is from WholeStageCodegenExec physical operator
import org.apache.spark.sql.execution.WholeStageCodegenExec
val wsc = execPlan(0).asInstanceOf[WholeStageCodegenExec]
scala> println(wsc.numberedTreeString)
00 *BroadcastHashJoin [cast(exploded#34 as bigint)], [id#37L], Inner, BuildRight
01 :- *Filter isnotnull(exploded#34)
02 : +- Generate explode([0,1,2]), false, false, [exploded#34]
03 : +- *Project
04 : +- *Filter (id#29L = 0)
05 : +- *Range (0, 2, step=1, splits=8)
06 +- *Range (0, 2, step=1, splits=8)
// Let's disable wholeStage codegen
// CollapseCodegenStages becomes a noop
// It is as if we were not applied Spark optimizations to a physical plan
// We're selective as we only disable whole-stage codegen
val newSpark = spark.newSession()
import org.apache.spark.sql.internal.SQLConf.WHOLESTAGE_CODEGEN_ENABLED
newSpark.sessionState.conf.setConf(WHOLESTAGE_CODEGEN_ENABLED, false)
scala> println(newSpark.sessionState.conf.wholeStageEnabled)
false
// Whole-stage codegen is disabled
// So regardless whether you do apply Spark optimizations or not
// Java code generation won't take place
val ccsWholeStageDisabled = CollapseCodegenStages(conf = newSpark.sessionState.conf)
val execPlan = ccsWholeStageDisabled.apply(plan)
// Note no stars in the output
scala> println(execPlan.numberedTreeString)
00 BroadcastHashJoin [cast(exploded#34 as bigint)], [id#37L], Inner, BuildRight
01 :- Filter isnotnull(exploded#34)
02 : +- Generate explode([0,1,2]), false, false, [exploded#34]
03 : +- Project
04 : +- Filter (id#29L = 0)
05 : +- Range (0, 2, step=1, splits=8)
06 +- Range (0, 2, step=1, splits=8)