InMemoryScans Execution Planning Strategy¶
InMemoryScans
is an execution planning strategy that <
[source, scala]¶
val spark: SparkSession = ... // query uses InMemoryRelation logical operator val q = spark.range(5).cache val plan = q.queryExecution.optimizedPlan scala> println(plan.numberedTreeString) 00 InMemoryRelation [id#208L], true, 10000, StorageLevel(disk, memory, deserialized, 1 replicas) 01 +- *Range (0, 5, step=1, splits=8)
// InMemoryScans is an internal class of SparkStrategies import spark.sessionState.planner.InMemoryScans val physicalPlan = InMemoryScans.apply(plan).head scala> println(physicalPlan.numberedTreeString) 00 InMemoryTableScan [id#208L] 01 +- InMemoryRelation [id#208L], true, 10000, StorageLevel(disk, memory, deserialized, 1 replicas) 02 +- *Range (0, 5, step=1, splits=8)
InMemoryScans
is part of the standard execution planning strategies of SparkPlanner.
=== [[apply]] Applying InMemoryScans Strategy to Logical Plan (Executing InMemoryScans) -- apply
Method
[source, scala]¶
apply(plan: LogicalPlan): Seq[SparkPlan]¶
apply
PhysicalOperation.md#unapply[destructures the input logical plan] to a InMemoryRelation logical operator.
In the end, apply
pruneFilterProject with a new InMemoryTableScanExec.md#creating-instance[InMemoryTableScanExec] physical operator.
apply
is part of GenericStrategy abstraction.