Skip to content

Debugging Query Execution

debug is a Scala package object with utilities for debugging query execution and an in-depth analysis of structured queries.

import org.apache.spark.sql.execution.debug._

// Every Dataset (incl. DataFrame) has now the debug and debugCodegen methods
val q: DataFrame = ???
q.debug
q.debugCodegen

Package Objects

Read up on Package Objects in the Scala programming language.

debug and debugCodegen are part of an implicit class (DebugQuery) that takes a Dataset when created (that is the query to executedebug on).

Tip

Read up on Implicit Classes in the official documentation of the Scala programming language.

Demo

val q = spark.range(5).join(spark.range(10), Seq("id"), "inner")
import org.apache.spark.sql.execution.debug._
scala> q.debugCodegen
Found 0 WholeStageCodegen subtrees.

What?! "Found 0 WholeStageCodegen subtrees."! Inconceivable!

The reason is that the query has not been Adaptive Query Execution-optimized yet (the isFinalPlan flag is false).

scala> println(q.queryExecution.executedPlan.numberedTreeString)
00 AdaptiveSparkPlan isFinalPlan=false
01 +- Project [id#4L]
02    +- BroadcastHashJoin [id#4L], [id#6L], Inner, BuildLeft, false
03       :- BroadcastExchange HashedRelationBroadcastMode(List(input[0, bigint, false]),false), [id=#16]
04       :  +- Range (0, 5, step=1, splits=16)
05       +- Range (0, 10, step=1, splits=16)

Execute Adaptive Query Execution optimization.

q.queryExecution.executedPlan.executeTake(1)

Note that the isFinalPlan flag is true.

scala> println(q.queryExecution.executedPlan.numberedTreeString)
00 AdaptiveSparkPlan isFinalPlan=true
01 +- == Final Plan ==
02    *(2) Project [id#4L]
03    +- *(2) BroadcastHashJoin [id#4L], [id#6L], Inner, BuildLeft, false
04       :- BroadcastQueryStage 0
05       :  +- BroadcastExchange HashedRelationBroadcastMode(List(input[0, bigint, false]),false), [id=#22]
06       :     +- *(1) Range (0, 5, step=1, splits=16)
07       +- *(2) Range (0, 10, step=1, splits=16)
08 +- == Initial Plan ==
09    Project [id#4L]
10    +- BroadcastHashJoin [id#4L], [id#6L], Inner, BuildLeft, false
11       :- BroadcastExchange HashedRelationBroadcastMode(List(input[0, bigint, false]),false), [id=#16]
12       :  +- Range (0, 5, step=1, splits=16)
13       +- Range (0, 10, step=1, splits=16)
scala> q.debugCodegen
Found 2 WholeStageCodegen subtrees.
== Subtree 1 / 2 (maxMethodCodeSize:282; maxConstantPoolSize:175(0.27% used); numInnerClasses:0) ==
*(1) Range (0, 5, step=1, splits=16)

Generated code:
/* 001 */ public Object generate(Object[] references) {
/* 002 */   return new GeneratedIteratorForCodegenStage1(references);
/* 003 */ }
/* 004 */
/* 005 */ // codegenStageId=1
/* 006 */ final class GeneratedIteratorForCodegenStage1 extends org.apache.spark.sql.execution.BufferedRowIterator {
/* 007 */   private Object[] references;
/* 008 */   private scala.collection.Iterator[] inputs;
/* 009 */   private boolean range_initRange_0;
/* 010 */   private long range_nextIndex_0;
/* 011 */   private TaskContext range_taskContext_0;
/* 012 */   private InputMetrics range_inputMetrics_0;
/* 013 */   private long range_batchEnd_0;
/* 014 */   private long range_numElementsTodo_0;
...

debug

debug(): Unit

Review Me

debug requests the <> (of the <>) for the optimized physical query plan.

debug transforms the optimized physical query plan to add a new <> physical operator for every physical operator.

debug requests the query plan to <> and then counts the number of rows in the result. It prints out the following message:

Results returned: [count]

In the end, debug requests every DebugExec physical operator (in the query plan) to <>.

val q = spark.range(10).where('id === 4)

scala> :type q
org.apache.spark.sql.Dataset[Long]

// Extend Dataset[Long] with debug and debugCodegen methods
import org.apache.spark.sql.execution.debug._

scala> q.debug
Results returned: 1
== WholeStageCodegen ==
Tuples output: 1
 id LongType: {java.lang.Long}
== Filter (id#0L = 4) ==
Tuples output: 0
 id LongType: {}
== Range (0, 10, step=1, splits=8) ==
Tuples output: 0
 id LongType: {}

debugCodegen

debugCodegen(): Unit

debugCodegen displays the Java source code generated for a structured query in whole-stage code generation (i.e. the output of each WholeStageCodegen subtree in the query plan).

Review Me

debugCodegen requests the QueryExecution (of the structured query) for the optimized physical query plan.

In the end, debugCodegen prints out the result to the standard output.

scala> spark.range(10).where('id === 4).debugCodegen
Found 1 WholeStageCodegen subtrees.
== Subtree 1 / 1 ==
*Filter (id#29L = 4)
+- *Range (0, 10, splits=8)

Generated code:
/* 001 */ public Object generate(Object[] references) {
/* 002 */   return new GeneratedIterator(references);
/* 003 */ }
/* 004 */
/* 005 */ final class GeneratedIterator extends org.apache.spark.sql.execution.BufferedRowIterator {
/* 006 */   private Object[] references;
...
Back to top