Skip to content

Table

Table is a TableInput and a Dataset output.

Creating Instance

Table takes the following to be created:

  • TableIdentifier
  • specifiedSchema (optional)
  • partitionCols (optional)
  • clusterCols (optional)
  • normalizedPath (optional)
  • Properties
  • Comment (optional)
  • QueryOrigin
  • isStreamingTable flag
  • Format (optional)

Table is created when:

Load Data

Input
load(
  readOptions: InputReadOptions): DataFrame

load is part of the Input abstraction.

load is a "shortcut" to create a batch or a streaming DataFrame (based on the type of the given InputReadOptions).

For StreamingReadOptions, load creates a DataStreamReader (Spark Structured Streaming) to load a table (using DataStreamReader.table operator) with the given StreamingReadOptions.

For BatchReadOptions, load creates a DataFrameReader to load a table (using DataFrameReader.table operator).