Table¶
Table is a TableInput and a Dataset output.
Creating Instance¶
Table takes the following to be created:
-
TableIdentifier -
specifiedSchema(optional) -
partitionCols(optional) -
clusterCols(optional) -
normalizedPath(optional) - Properties
- Comment (optional)
-
QueryOrigin -
isStreamingTableflag - Format (optional)
Table is created when:
PipelinesHandleris requested to define an OutputSqlGraphRegistrationContextis requested to handle CreateMaterializedViewAsSelect, CreateStreamingTableAsSelect, CreateStreamingTable logical commands
Load Data¶
load is a "shortcut" to create a batch or a streaming DataFrame (based on the type of the given InputReadOptions).
For StreamingReadOptions, load creates a DataStreamReader (Spark Structured Streaming) to load a table (using DataStreamReader.table operator) with the given StreamingReadOptions.
For BatchReadOptions, load creates a DataFrameReader to load a table (using DataFrameReader.table operator).