ConvertToDeltaCommand (ConvertToDeltaCommandBase)¶
ConvertToDeltaCommand
is a DeltaCommand that converts a parquet table to delta format.
ConvertToDeltaCommand
represents the following high-level operators:
- CONVERT TO DELTA SQL statement
- DeltaTable.convertToDelta
ConvertToDeltaCommand
is a LeafRunnableCommand
(Spark SQL).
ConvertToDeltaCommand
requires that the partition schema matches the partitions of the parquet table (or an AnalysisException is thrown).
ConvertToDeltaCommand
saves collectStats
in a Convert operation to indicate whether collectStats and spark.databricks.delta.stats.collect flags were both enabled.
Creating Instance¶
ConvertToDeltaCommand
takes the following to be created:
- Table Identifier
- Partition schema (optional)
- collectStats flag
- Path of the delta table (optional)
ConvertToDeltaCommand
is created when:
- CONVERT TO DELTA statement is used (and
DeltaSqlAstBuilder
is requested to parse CONVERT TO DELTA statement) - DeltaTable.convertToDelta utility is used (and
DeltaConvert
is requested to executeConvert)
collectStats¶
ConvertToDeltaCommand
is given collectStats
flag when created:
- Always
true
for DeltaTable.convertToDelta utility - Always
true
for CONVERT TO DELTA statement unlessNO STATISTICS
clause is used
Executing Command¶
RunnableCommand
run(
spark: SparkSession): Seq[Row]
run
is part of the RunnableCommand
(Spark SQL) contract.
run
creates a ConvertProperties from the TableIdentifier (with the given SparkSession
).
run
makes sure that the (data source) provider (the database part of the TableIdentifier) is either delta
or parquet
. For all other data source providers, run
throws an AnalysisException
:
CONVERT TO DELTA only supports parquet tables, but you are trying to convert a [sourceName] source: [ident]
For delta
data source provider, run
simply prints out the following message to standard output and returns.
The table you are trying to convert is already a delta table
For parquet
data source provider, run
uses DeltaLog
utility to create a DeltaLog. run
then requests DeltaLog
to update and start a new transaction. In the end, run
performConvert.
In case the readVersion of the new transaction is greater than -1
, run
simply prints out the following message to standard output and returns.
The table you are trying to convert is already a delta table
performConvert¶
performConvert(
spark: SparkSession,
txn: OptimisticTransaction,
convertProperties: ConvertTarget): Seq[Row]
performConvert
makes sure that the directory exists (from the given ConvertProperties
which is the table part of the TableIdentifier of the command).
performConvert
requests the OptimisticTransaction
for the DeltaLog that is then requested to ensureLogDirectoryExist.
performConvert
creates a Dataset to recursively list directories and files in the directory and leaves only files (by filtering out directories using WHERE
clause).
Note
performConvert
uses Dataset
API to build a distributed computation to query files.
performConvert
caches the Dataset
of file names.
performConvert
uses spark.databricks.delta.import.batchSize.schemaInference configuration property for the number of files per batch for schema inference. performConvert
mergeSchemasInParallel for every batch of files and then mergeSchemas.
performConvert
constructTableSchema using the inferred table schema and the partitionSchema (if specified).
performConvert
creates a new Metadata using the table schema and the partitionSchema (if specified).
performConvert
requests the OptimisticTransaction
to update the metadata.
performConvert
uses spark.databricks.delta.import.batchSize.statsCollection configuration property for the number of files per batch for stats collection. performConvert
creates an AddFile (in the data path of the DeltaLog of the OptimisticTransaction
) for every file in a batch.
In the end, performConvert
streamWrite (with the OptimisticTransaction
, the AddFile
s, and Convert operation) and unpersists the Dataset
of file names.
checkColumnMapping¶
checkColumnMapping(
txnMetadata: Metadata,
convertTargetTable: ConvertTargetTable): Unit
checkColumnMapping
throws a DeltaColumnMappingUnsupportedException when the requiredColumnMappingMode of the given ConvertTargetTable is not DeltaColumnMappingMode of the given Metadata.
streamWrite¶
streamWrite(
spark: SparkSession,
txn: OptimisticTransaction,
addFiles: Iterator[AddFile],
op: DeltaOperations.Operation,
numFiles: Long): Long
streamWrite
...FIXME
createAddFile¶
createAddFile(
file: SerializableFileStatus,
basePath: Path,
fs: FileSystem,
conf: SQLConf): AddFile
createAddFile
creates an AddFile action.
Internally, createAddFile
...FIXME
createAddFile
throws an AnalysisException
if the number of fields in the given partition schema does not match the number of partitions found (at partition discovery phase):
Expecting [size] partition column(s): [expectedCols], but found [size] partition column(s): [parsedCols] from parsing the file name: [path]
mergeSchemasInParallel¶
mergeSchemasInParallel(
sparkSession: SparkSession,
filesToTouch: Seq[FileStatus],
serializedConf: SerializableConfiguration): Option[StructType]
mergeSchemasInParallel
...FIXME
constructTableSchema¶
constructTableSchema(
spark: SparkSession,
dataSchema: StructType,
partitionFields: Seq[StructField]): StructType
constructTableSchema
...FIXME
createDeltaActions¶
createDeltaActions(
spark: SparkSession,
manifest: ConvertTargetFileManifest,
partitionSchema: StructType,
txn: OptimisticTransaction,
fs: FileSystem): Iterator[AddFile]
createDeltaActions
...FIXME
getOperation¶
getOperation(
numFilesConverted: Long,
convertProperties: ConvertTarget,
sourceFormat: String): DeltaOperations.Operation
getOperation
creates a Convert operation.
Property | Value |
---|---|
numFiles | number of files in the target table |
partitionBy | partitionSchema |
collectStats | collectStats AND spark.databricks.delta.stats.collect |
catalogTable | CatalogTable of the given ConvertTarget (if defined) |
sourceFormat | The given sourceFormat |
ConvertToDeltaCommandBase¶
ConvertToDeltaCommandBase
is the base of ConvertToDeltaCommand
-like commands with the only known implementation being ConvertToDeltaCommand
itself.
isCatalogTable¶
Signature
isCatalogTable(
analyzer: Analyzer,
tableIdent: TableIdentifier): Boolean
isCatalogTable
is part of the DeltaCommand abstraction.
isCatalogTable
...FIXME
getTargetTable¶
getTargetTable(
spark: SparkSession,
target: ConvertTarget): ConvertTargetTable
getTargetTable
...FIXME
getTargetTable
is used when:
ConvertToDeltaCommandBase
is executed
spark.databricks.delta.stats.collect¶
statsEnabled: Boolean
statsEnabled
is the value of spark.databricks.delta.stats.collect configuration property.
Lazy Value
statsEnabled
is a Scala lazy value to guarantee that the code to initialize it is executed once only (when accessed for the first time) and the computed value never changes afterwards.
Learn more in the Scala Language Specification.
statsEnabled
is used when:
ConvertToDeltaCommandBase
is requested to createDeltaActions and getOperation